Mittwoch, 18. November 2015

Effizient Fliegen: Rhythmische Luftstöße steuern Strömung am Flugzeugflügel

Strömungssimulation mit Luftausblasung auf der Tragfläche

Hochbegabung in Wissenschaft und Forschung


Größere und leistungsstärkere Triebwerke machen das Fliegen effizienter. Immer mehr Platz beanspruchen diese gigantischen Antriebsmaschinen an den Tragflächen moderner Passagiermaschinen. Dort beeinflussen sie die Strömung an der Flügeloberfläche und verringern so den Auftrieb. Insbesondere bei Starts und Landungen muss wegen der Riesentriebwerke schneller geflogen werden, um den Auftrieb und die Stabilität zu erhalten. Die Konsequenz: Mit der fortschreitenden Entwicklung größerer Triebwerke wären bald längere Start- und Landebahnen notwendig. Um das zu verhindern, arbeiten Wissenschaftler des Deutschen Zentrums für Luft- und Raumfahrt (DLR) an einem System, mit dem sich die Strömung beeinflussen und damit der Auftrieb steigern lässt.

Mit Druckluft gegen den Strömungsabriss

Der Schlüssel zu einer Steigerung des Auftriebs ist das Ausblasen von Druckluft an besonders strömungssensiblen Stellen. Gemeinsam mit Airbus und vielen weiteren europäischen Partnern haben DLR-Forscher im Rahmen des EU-Projektes AFLoNext (Active Flow Loads & Noise Control on Next Generation Wing) die Technik mit Hilfe von Computermodellen untersucht: "Indem wir durch feine schmale Doppelschlitze an der Vorderkante des Flugzeugflügels periodisch Luft ausstoßen, können wir das Strömungsverhalten auf der Profiloberfläche aktiv beeinflussen", erklärt Vlad Ciobaca vom DLR-Institut für Aerodynamik und Strömungstechnik die Herangehensweise, die an der TU Berlin entwickelt und in mehreren gemeinsamen Projekten bis zur Anwendungsreife verfeinert wurde. "Wir konnten zeigen, dass lokale Strömungsablösungen am Übergang vom Triebwerk zum Flügel fast vollständig unterdrückt werden", berichtet der Aerodynamiker. Ebenso funktioniert die Technik am Übergang vom Flügel zur Flügelspitze. Die Druckluft stammt dabei aus sogenannten Aktuationskammern, die in der Vorderkante des Flügels eingebettet sind.

Weniger Treibstoffverbrauch

Die Forscher sprechen bei der Methode auch vom gepulsten Ausblasen: "An der Profiloberfläche des Flügels werden auf diese Weise Wirbel erzeugt, die die oberflächennahe Strömung mit der freien Strömung vermischen. Dadurch wird der maximale Auftrieb erhöht und der Luftwiderstand verringert, was zu einem effizienteren Flugzeug mit weniger Treibstoffverbrauch und CO2-Ausstoß führt", erläutert Ciobaca. "Zugleich kann eine Maschine mit dieser Technik langsamer fliegen, wodurch kürzere Landestrecken benötigt werden." Im Gegensatz zu konventionellen Strömungskontrollsystemen verbraucht die aktive stoßweise Strömungskontrolle weniger Luft, ist wirkungsvoller und weitgehend wartungsfrei. "Das Konzept der stoßweisen Luftausblasung an den Flügelvorderkanten ist bereits etabliert, aber bislang wird es nur an einigen Forschungsflugzeugen eingesetzt. Wir sind die ersten, die diese Form der aktiven Strömungskontrolle am komplexen Triebwerk-Flügel-Übergang erforschen", sagt Ciobaca und fügt hinzu: "Jetzt wird diese Forschung anwendungsrelevant, sie könnte bei Passagiermaschinen viel verbessern."

Vielversprechende Ergebnisse zur neuen Technik wurden zuletzt auch im Rahmen des von Airbus geleiteten Verbundprojektes MOVE.ON gewonnen. Im Niedergeschwindigkeitswindkanal am DLR-Standort Braunschweig (DNW-NWB) hatten die Forscher die aktive Strömungskontrolle gemeinsam mit den Technischen Universitäten Berlin und Braunschweig  an dem Modell eines Außenflügels mit Erfolg getestet. Das Projekt MOVE.ON wurde dabei im Rahmen des Luftfahrtforschungsprogramms vom Bundesministerium für Wirtschaft und Energie gefördert.

Technologie mit Serienreife

Um das System so weit zu entwickeln, dass es serienmäßig in die Flugzeuge der nächsten Generation eingebaut werden könnte, gehen die Tests bald in die nächste Runde: Die AFLoNext-Forschergruppe wird – nach jetziger Planung im kommenden Jahr - nach Moskau reisen und die lokale Ablösekontrolle an einem beinahe realgroßen Flügel mit Triebwerk in einem der größten Windkanäle der Welt, dem TsAGI T-101, testen. Ein nächster konsequenter Schritt zur Technologieverifikation, so die beteiligten Wissenschaftler, wären dann Flugversuche an einem realen Flugversuchsträger.


Kontakte:

Falk Dambowsky  
Deutsches Zentrum für Luft- und Raumfahrt (DLR) Kommunikation, Redaktion Luftfahrt
Tel.: +49 2203 601-3959
Fax: +49 2203 601-3249

Vlad Ciobaca  
Deutsches Zentrum für Luft- und Raumfahrt (DLR) Institut für Aerodynamik und Strömungstechnik
Tel.: +49 531 295-2962